Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
*(0, x) → 0
*(1, x) → x
*(2, 2) → .(1, 0)
*(3, x) → .(x, *(min, x))
*(min, min) → 1
*(2, min) → .(min, 2)
*(.(x, y), z) → .(*(x, z), *(y, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
+(0, x) → x
+(x, x) → *(2, x)
+(1, 2) → 3
+(1, min) → 0
+(2, min) → 1
+(3, x) → .(1, +(min, x))
+(.(x, y), z) → .(x, +(y, z))
+(*(2, x), x) → *(3, x)
+(*(min, x), x) → 0
+(*(2, v), *(min, v)) → v
.(min, 3) → min
.(x, min) → .(+(min, x), 3)
.(0, x) → x
.(x, .(y, z)) → .(+(x, y), z)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
*(0, x) → 0
*(1, x) → x
*(2, 2) → .(1, 0)
*(3, x) → .(x, *(min, x))
*(min, min) → 1
*(2, min) → .(min, 2)
*(.(x, y), z) → .(*(x, z), *(y, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
+(0, x) → x
+(x, x) → *(2, x)
+(1, 2) → 3
+(1, min) → 0
+(2, min) → 1
+(3, x) → .(1, +(min, x))
+(.(x, y), z) → .(x, +(y, z))
+(*(2, x), x) → *(3, x)
+(*(min, x), x) → 0
+(*(2, v), *(min, v)) → v
.(min, 3) → min
.(x, min) → .(+(min, x), 3)
.(0, x) → x
.(x, .(y, z)) → .(+(x, y), z)
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
*1(.(x, y), z) → .1(*(x, z), *(y, z))
*1(+(y, z), x) → *1(x, y)
+1(*(2, x), x) → *1(3, x)
+1(.(x, y), z) → .1(x, +(y, z))
*1(.(x, y), z) → *1(x, z)
+1(.(x, y), z) → +1(y, z)
*1(2, 2) → .1(1, 0)
.1(x, min) → +1(min, x)
+1(x, x) → *1(2, x)
.1(x, .(y, z)) → .1(+(x, y), z)
*1(.(x, y), z) → *1(y, z)
*1(2, min) → .1(min, 2)
+1(3, x) → .1(1, +(min, x))
+1(3, x) → +1(min, x)
*1(+(y, z), x) → +1(*(x, y), *(x, z))
*1(3, x) → *1(min, x)
*1(+(y, z), x) → *1(x, z)
*1(3, x) → .1(x, *(min, x))
.1(x, min) → .1(+(min, x), 3)
.1(x, .(y, z)) → +1(x, y)
The TRS R consists of the following rules:
*(0, x) → 0
*(1, x) → x
*(2, 2) → .(1, 0)
*(3, x) → .(x, *(min, x))
*(min, min) → 1
*(2, min) → .(min, 2)
*(.(x, y), z) → .(*(x, z), *(y, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
+(0, x) → x
+(x, x) → *(2, x)
+(1, 2) → 3
+(1, min) → 0
+(2, min) → 1
+(3, x) → .(1, +(min, x))
+(.(x, y), z) → .(x, +(y, z))
+(*(2, x), x) → *(3, x)
+(*(min, x), x) → 0
+(*(2, v), *(min, v)) → v
.(min, 3) → min
.(x, min) → .(+(min, x), 3)
.(0, x) → x
.(x, .(y, z)) → .(+(x, y), z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
*1(.(x, y), z) → .1(*(x, z), *(y, z))
*1(+(y, z), x) → *1(x, y)
+1(*(2, x), x) → *1(3, x)
+1(.(x, y), z) → .1(x, +(y, z))
*1(.(x, y), z) → *1(x, z)
+1(.(x, y), z) → +1(y, z)
*1(2, 2) → .1(1, 0)
.1(x, min) → +1(min, x)
+1(x, x) → *1(2, x)
.1(x, .(y, z)) → .1(+(x, y), z)
*1(.(x, y), z) → *1(y, z)
*1(2, min) → .1(min, 2)
+1(3, x) → .1(1, +(min, x))
+1(3, x) → +1(min, x)
*1(+(y, z), x) → +1(*(x, y), *(x, z))
*1(3, x) → *1(min, x)
*1(+(y, z), x) → *1(x, z)
*1(3, x) → .1(x, *(min, x))
.1(x, min) → .1(+(min, x), 3)
.1(x, .(y, z)) → +1(x, y)
The TRS R consists of the following rules:
*(0, x) → 0
*(1, x) → x
*(2, 2) → .(1, 0)
*(3, x) → .(x, *(min, x))
*(min, min) → 1
*(2, min) → .(min, 2)
*(.(x, y), z) → .(*(x, z), *(y, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
+(0, x) → x
+(x, x) → *(2, x)
+(1, 2) → 3
+(1, min) → 0
+(2, min) → 1
+(3, x) → .(1, +(min, x))
+(.(x, y), z) → .(x, +(y, z))
+(*(2, x), x) → *(3, x)
+(*(min, x), x) → 0
+(*(2, v), *(min, v)) → v
.(min, 3) → min
.(x, min) → .(+(min, x), 3)
.(0, x) → x
.(x, .(y, z)) → .(+(x, y), z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 9 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
+1(*(2, x), x) → *1(3, x)
+1(.(x, y), z) → .1(x, +(y, z))
+1(3, x) → .1(1, +(min, x))
+1(.(x, y), z) → +1(y, z)
.1(x, .(y, z)) → .1(+(x, y), z)
*1(3, x) → .1(x, *(min, x))
.1(x, .(y, z)) → +1(x, y)
The TRS R consists of the following rules:
*(0, x) → 0
*(1, x) → x
*(2, 2) → .(1, 0)
*(3, x) → .(x, *(min, x))
*(min, min) → 1
*(2, min) → .(min, 2)
*(.(x, y), z) → .(*(x, z), *(y, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
+(0, x) → x
+(x, x) → *(2, x)
+(1, 2) → 3
+(1, min) → 0
+(2, min) → 1
+(3, x) → .(1, +(min, x))
+(.(x, y), z) → .(x, +(y, z))
+(*(2, x), x) → *(3, x)
+(*(min, x), x) → 0
+(*(2, v), *(min, v)) → v
.(min, 3) → min
.(x, min) → .(+(min, x), 3)
.(0, x) → x
.(x, .(y, z)) → .(+(x, y), z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule +1(3, x) → .1(1, +(min, x)) at position [1] we obtained the following new rules:
+1(3, min) → .1(1, *(2, min))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
+1(.(x, y), z) → .1(x, +(y, z))
+1(*(2, x), x) → *1(3, x)
+1(.(x, y), z) → +1(y, z)
.1(x, .(y, z)) → .1(+(x, y), z)
*1(3, x) → .1(x, *(min, x))
+1(3, min) → .1(1, *(2, min))
.1(x, .(y, z)) → +1(x, y)
The TRS R consists of the following rules:
*(0, x) → 0
*(1, x) → x
*(2, 2) → .(1, 0)
*(3, x) → .(x, *(min, x))
*(min, min) → 1
*(2, min) → .(min, 2)
*(.(x, y), z) → .(*(x, z), *(y, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
+(0, x) → x
+(x, x) → *(2, x)
+(1, 2) → 3
+(1, min) → 0
+(2, min) → 1
+(3, x) → .(1, +(min, x))
+(.(x, y), z) → .(x, +(y, z))
+(*(2, x), x) → *(3, x)
+(*(min, x), x) → 0
+(*(2, v), *(min, v)) → v
.(min, 3) → min
.(x, min) → .(+(min, x), 3)
.(0, x) → x
.(x, .(y, z)) → .(+(x, y), z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule +1(.(x, y), z) → .1(x, +(y, z)) at position [1] we obtained the following new rules:
+1(.(y0, 1), 2) → .1(y0, 3)
+1(.(y0, 2), min) → .1(y0, 1)
+1(.(y0, *(2, x0)), *(min, x0)) → .1(y0, x0)
+1(.(y0, *(min, x0)), x0) → .1(y0, 0)
+1(.(y0, 1), min) → .1(y0, 0)
+1(.(y0, 3), x0) → .1(y0, .(1, +(min, x0)))
+1(.(y0, *(2, x0)), x0) → .1(y0, *(3, x0))
+1(.(y0, .(x0, x1)), x2) → .1(y0, .(x0, +(x1, x2)))
+1(.(y0, 0), x0) → .1(y0, x0)
+1(.(y0, x0), x0) → .1(y0, *(2, x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
+1(*(2, x), x) → *1(3, x)
+1(.(y0, 1), 2) → .1(y0, 3)
+1(.(y0, 2), min) → .1(y0, 1)
+1(.(x, y), z) → +1(y, z)
+1(.(y0, *(2, x0)), *(min, x0)) → .1(y0, x0)
+1(.(y0, 1), min) → .1(y0, 0)
.1(x, .(y, z)) → .1(+(x, y), z)
+1(.(y0, *(2, x0)), x0) → .1(y0, *(3, x0))
+1(.(y0, 0), x0) → .1(y0, x0)
+1(.(y0, *(min, x0)), x0) → .1(y0, 0)
+1(.(y0, 3), x0) → .1(y0, .(1, +(min, x0)))
+1(.(y0, .(x0, x1)), x2) → .1(y0, .(x0, +(x1, x2)))
*1(3, x) → .1(x, *(min, x))
+1(.(y0, x0), x0) → .1(y0, *(2, x0))
+1(3, min) → .1(1, *(2, min))
.1(x, .(y, z)) → +1(x, y)
The TRS R consists of the following rules:
*(0, x) → 0
*(1, x) → x
*(2, 2) → .(1, 0)
*(3, x) → .(x, *(min, x))
*(min, min) → 1
*(2, min) → .(min, 2)
*(.(x, y), z) → .(*(x, z), *(y, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
+(0, x) → x
+(x, x) → *(2, x)
+(1, 2) → 3
+(1, min) → 0
+(2, min) → 1
+(3, x) → .(1, +(min, x))
+(.(x, y), z) → .(x, +(y, z))
+(*(2, x), x) → *(3, x)
+(*(min, x), x) → 0
+(*(2, v), *(min, v)) → v
.(min, 3) → min
.(x, min) → .(+(min, x), 3)
.(0, x) → x
.(x, .(y, z)) → .(+(x, y), z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
+1(*(2, x), x) → *1(3, x)
+1(.(x, y), z) → +1(y, z)
+1(.(y0, *(2, x0)), *(min, x0)) → .1(y0, x0)
+1(.(y0, 3), x0) → .1(y0, .(1, +(min, x0)))
.1(x, .(y, z)) → .1(+(x, y), z)
+1(.(y0, .(x0, x1)), x2) → .1(y0, .(x0, +(x1, x2)))
+1(.(y0, *(2, x0)), x0) → .1(y0, *(3, x0))
*1(3, x) → .1(x, *(min, x))
+1(.(y0, x0), x0) → .1(y0, *(2, x0))
+1(.(y0, 0), x0) → .1(y0, x0)
+1(3, min) → .1(1, *(2, min))
.1(x, .(y, z)) → +1(x, y)
The TRS R consists of the following rules:
*(0, x) → 0
*(1, x) → x
*(2, 2) → .(1, 0)
*(3, x) → .(x, *(min, x))
*(min, min) → 1
*(2, min) → .(min, 2)
*(.(x, y), z) → .(*(x, z), *(y, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
+(0, x) → x
+(x, x) → *(2, x)
+(1, 2) → 3
+(1, min) → 0
+(2, min) → 1
+(3, x) → .(1, +(min, x))
+(.(x, y), z) → .(x, +(y, z))
+(*(2, x), x) → *(3, x)
+(*(min, x), x) → 0
+(*(2, v), *(min, v)) → v
.(min, 3) → min
.(x, min) → .(+(min, x), 3)
.(0, x) → x
.(x, .(y, z)) → .(+(x, y), z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
*1(+(y, z), x) → *1(x, y)
*1(.(x, y), z) → *1(x, z)
*1(+(y, z), x) → *1(x, z)
*1(.(x, y), z) → *1(y, z)
The TRS R consists of the following rules:
*(0, x) → 0
*(1, x) → x
*(2, 2) → .(1, 0)
*(3, x) → .(x, *(min, x))
*(min, min) → 1
*(2, min) → .(min, 2)
*(.(x, y), z) → .(*(x, z), *(y, z))
*(+(y, z), x) → +(*(x, y), *(x, z))
+(0, x) → x
+(x, x) → *(2, x)
+(1, 2) → 3
+(1, min) → 0
+(2, min) → 1
+(3, x) → .(1, +(min, x))
+(.(x, y), z) → .(x, +(y, z))
+(*(2, x), x) → *(3, x)
+(*(min, x), x) → 0
+(*(2, v), *(min, v)) → v
.(min, 3) → min
.(x, min) → .(+(min, x), 3)
.(0, x) → x
.(x, .(y, z)) → .(+(x, y), z)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.